SM3 4.2 Log Evaluations & Properties

Exponential expressions are of the form a^x and have the value of multiplying $a \cdot a \cdot a \cdot a \cdot a \cdots a$ until a total of x copies of a have been multiplied together. If x is negative, we divide by x copies of a instead.

Example:	Evaluate 2 ⁴	<u>Example</u> :	Evaluate 3 ⁻⁴
	$2 \cdot 2 \cdot 2 \cdot 2$		$\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}$
	16		$\frac{1}{81}$

Logarithmic expressions are of the form $\log_b a$ where *b* represents the logarithmic base and *a* represents the argument of the logarithm. The expression has a value that answers the question "how many *b*s need to be multiplied to produce *a*?"

non man	non many so need to be maniphed to produce at			
<u>Example</u> :	Evaluate $\log_3 81$	<u>Example</u> :	Evaluate $\log_2 \frac{1}{16}$	
	81 is a power of 3		16 is a power of 2 but since it's in	
	Since $3 \cdot 3 \cdot 3 \cdot 3 = 81$, we need to multiply by 4 copies of 2 to get 81.		the bottom, we'll need negative power.	
	$\log_3 81 = 4$		Since $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{16}$, we need to divide by 4 copies of 2 to get $\frac{1}{16}$.	
			$\log_2 \frac{1}{16} = -4$	

Logarithmic and exponential operations are inverses: they undo one another. If you have to evaluate a base raised to a like-based log, the two operations cancel. Likewise, when evaluating the log of an exponential that shares the same base, the two operations cancel. <u>Example</u>: Evaluate $\log_3 3^7$ <u>Example</u>: Evaluate $6^{\log_6 11}$

$\log_3 x$ and 3^x are inverse operations and eliminate one another.	6^x and $\log_6 x$ are inverse operations and eliminate one another.
$\log_3 3^7 = 7$	$6^{\log_6 11} = 11$

Since logarithms and exponentials are related then we can switch between their forms. We know that $3^2 = 9$ and $\log_3 9 = 2$ (because 2 copies of 3's are needed to make 9), this leads us to see that we can switch between exponential form and logarithmic if needed.

Exponential Form $b^c = a$ \longleftrightarrow Logarithmic Form $\log_b a = c$

Evaluate the following expressions

1. 3 ⁵	2. 4 ⁻²	3. 10 ³	$4 2^{-2}$
5. log ₃ 27	6. log ₄ 4	7. log ₈ 1	8. $\log_3 \frac{1}{81}$
9. log ₅ 125	10. log ₁₂ 144	11. log 1000	12. log 0.001
13. 2 ^{log₂ 12}	14. log ₁₁ 11 ⁻³	15. log ₄ 16 ^x	16. $\log_2 \frac{1}{32}$
17. $6^{\log_6(2x+1)}$	18. $\log_6 \frac{1}{216}$	19. log ₈ 8 ⁷	20. log ₁₆ 4
21. <i>e</i> ⁰	22. ln1	23. e ^{lnx}	24. ln(e) ²

Rewrite each exponential in logarithmic form.

25.
$$81^{1/2} = 9$$
 26. $19^2 = 361$ 27. $\frac{1}{32} = 2^{-5}$ 28. $r^8 = 117$

Rewrite each logarithm in exponential form.29. $\log_{12} \frac{1}{144} = -2$ 30. $\log_{15} 225 = 2$ 31. $\log_{11} y = x$ 32. $\log_6 1 =$

Complete the tables of values of a function: $22) f(x) = \log_{10} x$

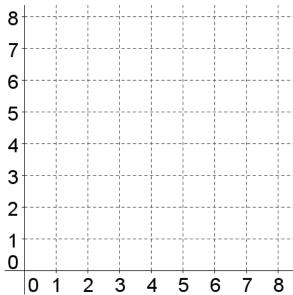
$33) f(x) = \log_3 x$	
x	f(x)
1	
9	
1	
3	
1	
3	
9	

35) $p(x) = \log_5 x$	
<i>x</i>	p(x)
	2
	0
	-3
	4
	$\frac{1}{2}$

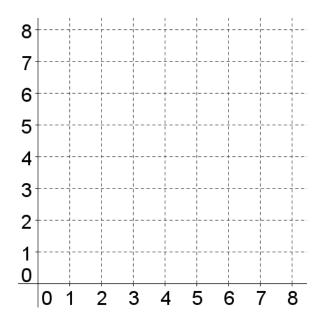
34) $g(x) = \log_2 x$	
x	g(x)
1	
16	
$\frac{1}{8}$	
1024	
$\frac{1}{32}$	

$36) q(x) = \log x$	
<i>x</i>	q(x)
	4
	-1
	0
	6
	-3

v(x)	$= 2^{x}$	w(x) =	$= \log_2 x$
x	v(x)	x	w(x)
1			1
2			2
3			3



v(x)	$= e^x$	w(x)	= ln x
x	v(x)	x	w(x)
1			1
2			2
3			3



37) Complete the tables then graph both functions on the same coordinate axis by plotting points and connecting with a curve.